Stochastic approximation algorithms for superquantiles estimation
نویسندگان
چکیده
This paper is devoted to two different two-time-scale stochastic approximation algorithms for superquantile, also known as conditional value-at-risk, estimation. We shall investigate the asymptotic behavior of a Robbins-Monro estimator and its convexified version. Our main contribution establish almost sure convergence, quadratic strong law iterated logarithm our estimates via martingale approach. A joint normality provided. theoretical analysis illustrated by numerical experiments on real datasets.
منابع مشابه
Approximation algorithms for stochastic orienteering
In the Stochastic Orienteering problem, we are given a metric, where each node also has a job located there with some deterministic reward and a random size. (Think of the jobs as being chores one needs to run, and the sizes as the amount of time it takes to do the chore.) The goal is to adaptively decide which nodes to visit to maximize total expected reward, subject to the constraint that the...
متن کاملApproximation Algorithms for Reliable Stochastic Combinatorial Optimization
We consider optimization problems that can be formulated as minimizing the cost of a feasible solution wx over an arbitrary combinatorial feasible set F ⊂ {0, 1}n. For these problems we describe a broad class of corresponding stochastic problems where the cost vector W has independent random components, unknown at the time of solution. A natural and important objective that incorporates risk in...
متن کاملConfidence Regions for Stochastic Approximation Algorithms
In principle, known central limit theorems for stochastic approximation schemes permit the simulationist to provide confidence regions for both the optimum and optimizer of a stochastic optimization problem that is solved by means of such algorithms. Unfortunately, the covariance structure of the limiting normal distribution depends in a complex way on the problem data. In particular, the covar...
متن کاملApproximation Algorithms for Stochastic k-TSP
This paper studies the stochastic variant of the classical k-TSP problem where rewards at the vertices are independent random variables which are instantiated upon the tour’s visit. The objective is to minimize the expected length of a tour that collects reward at least k. The solution is a policy describing the tour which may (adaptive) or may not (non-adaptive) depend on the observed rewards....
متن کاملApproximation Algorithms for Stochastic Inventory Control Models
In this paper we address the long-standing problem of finding computationally efficient and provably good inventory control policies in supply chains with correlated and nonstationary (time-dependent) stochastic demands. This problem arises in many domains and has many practical applications such as dynamic forecast updates (for some applications see Erkip et al. 1990 and Lee et al. 1999). We c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2021
ISSN: ['1083-6489']
DOI: https://doi.org/10.1214/21-ejp648